
Contents lists available at ScienceDirect

heriogenology

Theriogenology 89 (2017) 318–323
T

MHC-correlated preferences in diestrous female horses

a b,

journal homepage: www.theriojournal .com
(Equus caballus)

D. Burger a,*, C. Meuwly a, E. Marti b, H. Sieme c, M. Oberthür d, J. Jand
S. Meinecke-Tillmann d,1, C. Wedekind e,1

a Swiss Institute of Equine Medicine, Agroscope and University of Bern, Avenches, Switzerland
bDepartment of Clinical Research, Vetsuisse Faculty, University of Bern, Bern, Switzerland
c Institute for Reproductive Biology, University of Veterinary Medicine Hanover, Hanover, Germany
dUnit for Reproductive Medicine–Clinic for Horses, University of Veterinary Medicine Hanover, Hanover, Germany
eDepartment of Ecology and Evolution, Biophore, University of Lausanne, Lausanne, Switzerland
a r t i c l e i n f o a b s t r a c t

influence
Article history: Genes of the major histocompatibility complex (MHC) have been shown to
mber 2
orrelated
se (Equus
stallions.
ce during
termined
eles were
ctiveness
formares
elevated
g estrus.
e plasma
eks of the
as signifi-
Received 26 March 2016
Received in revised form 7 Septe
Accepted 7 September 2016

Keywords:
MHC
Horse
Social communication
Mate choice
Testosterone
Estrus cycle
he mares.
kedmale

reserved.

E-mail address: dominik.burger@vet
1 Shared senior authorship.

0093-691X/$ – see front matter � 2016
http://dx.doi.org/10.1016/j.theriogenolog
016
communication in many vertebrates, possibly with context-specific MHC-c
reactions. Here we test for MHC-linked female preferences in the polygynous hor
caballus) by repeatedly exposing 19mares to a group of seven sexually experienced
Each mare was tested four times during two consecutive reproductive cycles, twi
estrus and twice during diestrus.Male plasma testosterone concentrationswere de
from weekly blood samples, and equine leukocyte antigen (ELA) class I and II all
determined serologically at the end of the experiments. Perception of male attra
was strongly dependent on estrous cycle:meanpreference scores did not correlate
in diestrus and estrus and variedmoreduring estrus than during diestrus.We found
female interests for MHC-dissimilar stallions, but only during diestrus, not durin
Female preferences were not significantly predicted by mean male testosteron
concentrations. However, testosterone concentrations changed during the 11 we
experiment. By the end of the experiment, average testosterone concentration w
cantly correlated to the average number of MHC alleles the stallions shared with t
Weconclude that theMHCaffects female preferences for stallions, but non-MHC lin
characteristics can overshadow effects of the MHC during estrus.

� 2016 Elsevier Inc. All rights
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(MHC) on female mate preferences during est
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The MHC is a group of genes that play a critica
the immune system of vertebrates andmay be the b
vertebrate-wide chemosensory communication
[3,4]. There is accumulating evidence from differe
of studies that MHC-linked social signals facilitate
ative behavior among kin or influence sexual selec
life history at various levels, including mate choice
fusion, or even maternal decisions concerning
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development and pregnancy termination [5,6]. The types of
behaviors and decisions that can be MHC-mediated are
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very diverse, often varying from species to species
from context to context [3].

The MHC influences sexual selection and mati
erences in amphibians, reptiles (e.g. Swedish san
Lacerta agilis, [7]; tuatara, Sphenodon punctatus, [8
(e.g. ring-necked pheasant, Phasianus colchicus, [9
frigatebirds, Fregata minor, [10]; blue petrels, H
caerulea, [11]) fishes (e.g. three-spined stick
Gasterosteus aculeatus, [12,13]; Atlantic salmon, Sal
[14]; Chinese rose bitterling, Rhodeus ocellatus, [15]
mammals like rodents (e.g. mice,Mus musculus dom
[16,17]; tuco-tucos, Ctenomys talarum, [18]), m
(e.g. mandrill, Mandrillus sphinx, [19]) and humans
In general, MHC-dissimilar males and females
prefer each other, i.e. disassortative mate preferenc
to be the rule.

MHC-dependent sexual selection may lead to
kinds of MHC genotypes or simply increase hetero
in offspring [22–24] thereby providing an immun
advantage for the progeny [25–28] and, ultimately
[14,29–32]. The MHC is of crucial importance not
immunological resistance but especially also for k
tion and inbreeding avoidance [3,5,19,33]. MH
communication was recently found in the horse
caballus): stallions reacted differently to the pre
MHC–similar or–dissimilar mares when kept pairw
several weeks [34].

Under feral conditions, horses are polygynous
throughout the year in fairly stable social and b
bands so-called harems [35–37]. Harems usually c
one and sometimes up to five stallions [38] alo
between one and nine or more breeding mares a
offspring. Stallions seem to generally avoid breed
mares born within the harem [39], but it is not
whether this potential form of inbreeding avoi
driven by male or female preferences, even i
generally seem to play the more decisive role
choice [1]. Stallions who are not in a haremwill of
co-called “bachelor stallion bands” that usually c
between two and 17 stallions, typically with flu
group sizes [40]. Bachelors sometimes have the o
nity tomatewith mares previously dispersed from
band. Apart from that, bachelors show no or little b
activity. Dispersal of young mares from their natal
strategy hypothesized to avoid inbreeding, begi
sexual maturity and was shown to peak seasona
sexual receptivity [41].

The objective of this study was to test for MH
female behavior when exposed to several stallion
estrus and during diestrus. We also recorded mal
terone values in order to develop hypothesis abo
reactions to our experimental set-up.

2. Materials and methods

2.1. Horses

19 mares without foals (mean age � SD ¼ 8
years; six nulliparous with 6.3 � 1.9, and 13 p
ven
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years; all with normal fertility stud records in t
before the study) were used in this study. Be
experiments, all horses had been vaccinat
dewormed, and using the McMaster method (d
limit: 50 eggs per gram, EpG; [42]) on feces sam
stallionwith greater than 50 EpGwas registered. M
stallions were not familiar with each other.

2.2. Study design

As experimental design we used an arena test d
for polygynous species [43–45]. The experiment
consisted of 2 � 4 boxes (12 m2) divided by a
(12.65 m long and 2.90 m wide). The stallio
randomly distributed to these boxes. One mare e
introduced in the corridor and her preferred whe
recorded. Each mare was tested in two consecutive
cycles both during estrus and diestrus. Estrous cyc
monitored via daily transrectal ultrasonographic
nation during estrus until ovulation and every t
during diestrus, respectively. When at least one fol
reached a diameter �35 mm, an uterus edema at s
higher was present [46], and the absence of any
luteum could be confirmed, 1500 IU hCG (Chorul
Intervet, Netherlands) was applied intravenousl
evening of the same day to induce ovulation, wh
confirmed 48 hours later. The mare (showing be
estrus and receptivity when teased with an ad
stallion) was then tested the day after ovulation in
(“estrus”) and 5 to 12 days after ovulation, resp
(“diestrus”).

For the first two test series during the mares’ fir
and diestrus, the stallions’ box fronts toward the
were fully covered with the exception of an op
21.5 � 15.0 cm, 1.50 m above the ground. The sec
tests took placewithout blinds (allowing full visual
during the mares’ second estrous cycles (16 of the 1
were still available for the second test series). Th
ment with and without blinds was used for a paral
on visual versus non-visual female perception of m
and size (Burger et al., submitted manuscript).

For each test, a mare was led into the corri
walked along the seven boxes with the stallions
15 seconds in front of each stallion’s box, with th
close to the small openings or to the stallion
acquainted with each male’s position, and then rel
the center of the corridor. The experimenter (w
naïve with respect to the animals’ MHC) left the st
used video surveillance to record the time the m
interacting with each stallion.

After 10 minutes, the stallion with the highest
tive contact time was removed from the stable (
mare had been temporarily removed to avoi
contact). This procedure was repeated (withou
15 seconds presentation of all remaining stallion
only two stallions remained. The stallions we
ranked (1 for the stallion that received the highes
lative contact time first, up to seven for the stal
received the lowest contact time when only two



remained – if a mare ceased to show any preferences a
the first stallions had been removed, the remain
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Table 1
Characteristics of the stallions: mean peripheral plasma testosterone
levels during the experiments (ng/mL), and mean preference ranks they
received from mares during diestrus and estrus.

ID Mean testosterone (range) Mean preference rank
(range)a

Diestrus Estrus

A 8.2 (2.6–15.5) 3.59 (1–6.5) 3.08 (1–6)
B 6.6 (3.0–10.9) 4.59 (1–7) 3.18 (1–6
C 9.0 (3.5–18.0) 3.51 (1–7) 3.66 (1–6
Db 10.1 (2.6–24.0) 3.37 (1–7) 5.49 (1–7
E 14.3 (6.0–22.5) 4.09 (1–7) 5.00 (1–7
F 11.7 (4.2–23.8) 3.97 (1–7) 2.28 (1–5
Gc 2.6 (2.2–3.3) 3.93 (1–7) 5.21 (1–7

a Low ranks indicate high attractiveness.
b Euthanized toward end of study because of colic (13 of 70 r

missing).
c Had experienced immunological castration treatment earlier.
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stallions received tied ranks).
The experiments were approved by the Etat

Service Vétérinaire (permit #2211). The stallions
contact with other mares, were regularly exercised
individual access (1 hour/day) to a separated p
Mares were turned out in groups in paddocks (3 ho
Three weeks before the end of the study, one stal
to be euthanized due to an acute colic (Table 1). Th
13 of the expected 490 preference ranks (2.7
missing.
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Equine leukocyte antigen (ELA) class I and clas
determined serologically in microcytotoxicity te
alloantisera (i.e. sera generated in a conspecific;
detecting 23 ELA-A (MHC class I) specificities, th
allele W21, and five MHC class II alleles. ELA of a
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Fig. 1. Seven stallions ranked for attractiveness by 19 MHC-similar a
between mean ranks each stallion received fromMHC-similar and MHC
the stallions’ mean rank in the respective test situations to take duratio
tests). The dotted line indicates the neutral expectancy that differs fro
statistics. MHC, major histocompatibility complex.
ELA specificity, otherwise they were classified a
dissimilar”.

2.4. Testosterone analysis
fter
ing

Blood samples (EDTA, jugular venipuncture) we
from stallions at the start of the experiments, and
week from week seven on (every Tuesday, betwe
am and 8:30 am) to determine testosterone
concentrations as in Burger et al. [34,50]. The samp
immediately centrifuged (�4000g for 10 minutes)
plasma frozen (�80 �C) until analysis. Testoster
determined via electrochemiluminescence immu
with inter- and intra-assay coefficients of variatio
and 1.4%, respectively [51].

2.5. Data analysis
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For statistics, we used mean preference ra
stallion and experimental setup for mares th
MHC-similar or –dissimilar each. MHC effects we
in within-subject analyses (MANOVA, to control
tweenmale differences in non-MHC linked charact
comparing the mean preference rank a stallion
fromMHC-similar mares with the mean preference
received from MHC-dissimilar mares. Because tim
in the experimental set up could potentially influ
animals’ behaviors and hence create confounding
the mean time a stallion was in the experiment
(revealed by its mean rank) and the interaction
this overall mean rank and the mean preference
MHC-similar or–dissimilar mares were included
MANOVA (and shown in Fig. 1). Pearson’s co
coefficients (r) were used if graphical inspection su
no violation of the model assumptions, otherw
non-parametric Kendall’s s was used.

B

3.5 4.0 6.05.04.53.0 5.5

rous mares Mean rank given by estrous mares

6.00 5.5
preferred less preferredmore preferred

nd -dissimilar mares during (A) diestrus and (B) estrus. The plot shows the difference
-dissimilar mares (positive differences indicate preferences for MHC-dissimilarity) against
n of exposure into account (low ranks indicate high attractiveness and early removal from
m 0 because of 2.7% missing data. The solid lines indicate the regressions. See text for



3. Results
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Fig. 2. Peripheral plasma testosterone levels (ng/mL) versus average number of MHC antigens shared with the 19 mares the seven stallions were exposed to
(regression lines). (A) Testosterone before exposure to mares (r ¼ �0.15, P ¼ 0.78). (B) Average testosterone (95% CI) during repeated exposure to the mares versus
their average (95% CI) number of shared MHC antigens (r ¼ 0.95, P ¼ 0.003). MHC, major histocompatibility complex.
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The mean ranks of attractiveness varied mor
estrus than during diestrus (Brown-Forsythe test
variances: F1,12 ¼ 10.9, P ¼ 0.006; Fig. 1A, B), and th
no positive correlation between these average rank
diestrus and estrus (r¼�0.45, P¼ 0.31). Rankings o
during estrus and during diestrus were therefore a
separately. Because the treatment with blinds
produce any MHC-linked effects (data not sho
discarded the blinds as treatment factor and use
ranks per diestrus and estrus of each mare for
analyses.

ELA sharing with stallions affected the perce
diestrous mares: stallions were on average ranked
attractive by ELA-dissimilar mares than by ELA
mares, and the more dissimilar, the more attract
were generally ranked (Fig. 1A; MANOVA: within
effect of ELA sharing, F1,5 ¼ 10.9, P ¼ 0.022; int
between ELA sharing and mean attractiveness
diestrus: F1,5 ¼ 10.0, P ¼ 0.025). No such ELA effec
be seen during estrus (Fig. 1B; MANOVA: within
effect of ELA sharing, F1,5 ¼ 0.55, P ¼ 0.49; int
between ELA sharing and average rank during
F1,5 ¼ 0.71, P ¼ 0.44).

Table 1 lists the mean preference ranks that the
received from diestrous and estrous mares, and the
testosterone blood levels. One stallion that had
enced immunological castration treatment
vaccination) 2 years before the experiments d
extraordinary low levels of testosterone (Table 1)
therefore excluded from testosterone-related s
analyses. The other stallions’ mean testosteron
levels were neither significantly correlated to fem
erences during diestrus (r ¼ �0.21, P ¼ 0.68) no
estrus (r ¼ �0.41, P ¼ 0.42). Testosterone levels we
significantly correlated to stallion age (P always >
expected, there was also no correlation between
terone and MHC sharing in the initial samplin
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mares were positively correlated to the number
similar mares the stallions were exposed to (K
s¼ 0.93, P¼ 0.01) and to the average number of sh
(Fig. 2B; r ¼ 0.95, P ¼ 0.003).

4. Discussion

We found that female perception of stallions
tiveness is dependent on the estrus cycle. Diestrou
showed an elevated interest for MHC-dissimilar s
The analogous preferences could not be observed
estrus. Our observations confirm MHC-dependen
signaling in horses [34] and suggest that the impor
MHC-linked preferences depends on the estrous c
relative importance of MHC-linked signals to mat
in horses remains to be demonstrated.

During estrus, MHC preference seems to b
shadowed by non-MHC dependent male characteris
remain to be identified. Various non-MHC-linked o
behavioral, visual, or auditory characteristics can
nificant roles in mate choice, as observed in other m
species and reviewed by Clutton-Brock and McAul
The parallel study on visual versus non-visual
perception of male age and size (Burger et al., su
manuscript) established that potential immunolo
fects, such as the parasitic status of our study anima
to play no important role in this context.

We also found that, by the end of the experim
average peripheral blood testosterone levels in
reflected their average MHC-similarity to the ma
moreMHC-similar mares the stallions were expose
higher their average testosterone blood level. In
study where stallions andmares were kept in isola
and over several weeks, stallions developed high
terone levels when kept with an MHC-dissimilar m
significantly lower ones when kept with an MHC
mare [34]. Together, these findings support the co



of Ruff et al. [3] that MHC-mediated behaviors are so
diverse that they may well be not only species-specific but
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also context-dependent. In preference tests, for e
mice and humans of both sexes significantly favor
MHC-dissimilar individuals [16,17,20,53], while
mice when pregnant prefer the odors of MHC
individuals [33]. Analogous changes in preferenc
be observed in women using the contracep
[20,54,55]. Context-dependent interpretation o
linked odors also seem to happen when a pr
block is induced in mice. Such a pregnancy block
likely if a female is exposed to odors of a stimulus m
genetically differs only on the MHC to the fatheri
(i.e. a male of a MHC-congenic line) than if expo
male from the same inbred line [56–58].

Numerous studies have found links between test
and the behavior males show toward other males o
females [59]. The elevated testosterone levels we o
herewere not predicted in the context ofmate attra
seemed consistent with scenarios based on perce
structure. A high frequency of MHC similarity with
groups could, for example, simulate a high average d
kinship (even if >95% of all male-female pair comb
used in our experiments were unrelated regarding
four generations). The corresponding testosteron
may then reveal a stallion’s willingness to protect
port kin. It is even possible that the perceived aver
of kinship to the mares affects the socials ranks am
stallions. High testosterone levels may then reflect
cial ranks within the group, as was found in bono
paniscus, [60]) and bighorn rams (Ovis canadensis,
feral horses, harem stallions have indeed high test
levels if other stallions are around [62], and they are
in constant contact to kin, because female offspring
the harem definitively only at approximately 3 to 4
age [41]. Therefore, the typical odors that an est
harem stallion perceives include those of manyMHC
types, i.e. increasing levels of MHC sharing betwee
and a given stallion may be perceived as increasing
of a family bond that may strengthen a stallion’s ra
group, analogous to findings in other mammals [63
we must also consider the possibility of type I erro
findings, especially because we had no clear a prio
tancy about the direction of such a possible effect. T
the link between testosterone and theMHC should
again in an independent set up.

The experimental procedure we used turned o
useful for research on mate preferences also in h
contrast to other protocols that are typically base
choice between two options [44], the protocol
here allows for simultaneous choice among
stallions.

In conclusion, our findings confirm that (i) ho
reveal their MHC type, i.e. communication betwee
can be based on MHC-linked social signals [34], an
in other species, the receiver’s own MHC influe
interpretation of MHC-linked signals in horses
because receivers have learned MHC-linked signal
ontogeny [64], or because the MHC or closely link
such as olfactory receptor genes [65] directly i
odor perception. Furthermore, our findings sugg
ple,
s of
ale
ilar
uld
pill
HC-
ncy
ore
that
ale
to a

testosterone blood levels and hence their behavio
tegies to the MHC types of mares they are expose
(v) stallions’ reactions to female MHC-linked sign
to be context-specific. Further studies are nece
elucidate the most influential male parameters
mate choice of estrous mares. A better understa
natural female reproductive strategies and takin
into account could help solving problems linked to
breeding methods.
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Table S1
Equine leukocyte antigens (ELA) of the 19 mares and seven stallions,
respectively.

Nr ELA

Mares
1 A2/A18 BeIII, W22
2 A3/A10 BeIII, W21, Be200, W12
3 A6
4 A5/A10, BeIII, W21, W13, Be200
5 A2/W21, BeVIII
6 A2/Be108
7 A2/A18,BeIII
8 A1/A6, BeVIII
9 A5/W11, BeIII, W21, W23
10 A3/A8
11 A15, W21, W13
12 A2/A9, W22
13 A15/A18, BeIII, W21, W23
14 A6/A10, BeIII, Be200
15 A2/A15, BeIII, W21, W22, W23
16 A2/A15, BeIII, W21, W22, W13
17 A3/A5, W21, W13, W23
18 A15/A16, BeIII, W21
19 A2/A18 BeIII, W22

Stallions
1 A10/W11, BeIII, W21, Be200
2 A8/Be108, W21
3 Be108/W11, BeIII
4 A3/W11, Belll, BeVIII
5 A5/A18, BeIII, W21, W23
6 A10/A8, BeIII, W21, Be200
7 A2/Be108, W22
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